工业数字孪生白皮书(2021)(附报告)

发展脉络

工业数字孪生发展经历了三个阶段,其发展背后是数字化技术在工业领域的演进与变革。第一阶段,概念发展期。2003年,美国密歇根大学MichaelGrieves教授首次提出了数字孪生概念,概念提出的基础是当时产品生命周期管理(PLM)、仿真等工业软件已经较为成熟,为数字孪生体在虚拟空间构建提供支撑基础。第二阶段,应用于航空航天行业。数字孪生最早应用于航空航天行业,2012年美国空军研究室将数字孪生应用到战斗机维护中,而这与航空航天行业最早建设基于模型的系统工程(MBSE)息息相关,能够支撑多类模型敏捷流转和无缝集成。第三阶段,向多类行业拓展应用。近些年,数字孪生应用已从航空航天领域向工业各领域全面拓展,西门子、GE等工业巨头纷纷打造数字孪生解决方案,赋能制造业数字化转型。数字孪生蓬勃发展的背后与新一代信息技术的兴起、工业互联网在多个行业的普及应用有莫大关联。

定义及功能架构

工业数字孪生是多类数字化技术集成融合和创新应用,基于建模工具在数字空间构建起精准物理对象模型,再利用实时IOT数据驱动模型运转,进而通过数据与模型集成融合构建起综合决策能力,推动工业全业务流程闭环优化。

第一层,连接层。具备采集感知和反馈控制两类功能,是数字孪生闭环优化的起始和终止环节。通过深层次的采集感知获取物理对象全方位数据,利用高质量反馈控制完成物理对象最终执行。

第二层,映射层。具备数据互联、信息互通、模型互操作三类功能,同时数据、信息、模型三者间能够实时融合。其中,数据互联指通过工业通讯实现物理对象市场数据、研发数据、生产数据、运营数据等全生命周期数据集成;信息互通指利用数据字典、元数据描述等功能,构建统一信息模型,实现物理对象信息的统一描述;模型互操作指能够通过多模型融合技术将几何模型、仿真模型、业务模型、数据模型等多类模型进行关联和集成融合。

第三层,决策层。在连接层和映射层的基础上,通过综合决策实现描述、诊断、预测、处置等不同深度应用,并将最终决策指令反馈给物理对象,支撑实现闭环控制。

全生命周期实时映射、综合决策、闭环优化是数字孪生发展三大典型特征。一是全生命周期实时映射,指孪生对象与物理对象能够在全生命周期实时映射,并持续通过实时数据修正完善孪生模型;二是综合决策,指通过数据、信息、模型的综合集成,构建起智能分析的决策能力;三是闭环优化,指数字孪生能够实现对物理对象从采集感知、决策分析到反馈控制的全流程闭环应用。本质是设备可识别指令、工程师知识经验与管理者决策信息在操作流程中的闭环传递,最终实现智慧的累加和传承。

发展数字孪生意义

发展工业数字孪生意义重大。当前,全球积极布局数字孪生应用,2020年美、德两大制造强国分别成立了数字孪生联盟和工业数字孪生协会,加快构建数字孪生产业协同和创新生态。市场研究公司GlobalIndustryAnalysts报告2020年全球数字孪生市场规模为46亿美元,并将于2026年达到287亿美元。Garner也连续三年将数字孪生列为未来十大战略趋势。

从国家层面看,随着我国工业互联网创新发展工程的深入实施,我国涌现了大量数字化网络化创新应用,但在智能化探索方面实践较少,如何推动我国工业互联网应用由数字化网络化迈向智能化成为当前亟需解决的重大课题。而数字孪生为我国工业互联网智能化探索提供了基础方法,成为支撑我国制造业高质量发展的关键抓手。

从产业层面看,数字孪生有望带动我国工业软件产业快速发展,加快缩短与国外工业软件差距。由于我国工业历程发展时间短,工业软件核心模型和算法一直与国外存在差距,成为国家关键“卡脖子”短板。数字孪生能够充分发挥我国工业门类齐全、场景众多的优势,释放我国工业数据红利,将人工智能技术与工业软件结合,通过数据科学优化机理模型性能,实现工业软件弯道超车。

从企业层面看,数字孪生在工业研发、生产、运维全链条均发挥重要作用。在研发阶段,数字孪生能够通过虚拟调试加快推动产品研发低成本试错。在生产阶段,数字孪生能够构建实时联动的三维可视化工厂,提升工厂一体化管控水平。在运维阶段,数字孪生可以将仿真技术与大数据技术结合,不但能够知道工厂或设备“什么时候发生故障”,还能够了解“哪里发生了故障”,极大提升了运维的安全可靠性。

工业数字孪生白皮书(2021)(附报告)

工业数字孪生白皮书(2021)(附报告)

工业数字孪生白皮书(2021)(附报告)

工业数字孪生白皮书(2021)(附报告)

工业数字孪生白皮书(2021)(附报告)

工业数字孪生白皮书(2021)(附报告)

欢迎加入东西智库微信群,专注制造业资料分享及交流(微信扫码添加东西智库小助手)。