机器视觉:智能制造的眼睛

在工业生产的过程中,机器视觉相对于人眼识别体现了较大优势。机器视觉具有自动化、客观、非接触和高精度等特点。特别是在工业生产领域,机器视觉强调生产的精度和速度,以及工业现场环境下的可靠性与安全性,在重复和机械性的工作中具有较大的应用价值。

我们的日常生活工作学习都离不开眼睛,眼睛在我们身上扮演着极其重要的角色,机器视觉系统也不例外,机器视觉是采用机器代替人眼来做测量与判断,通过计算机摄取图像来模拟人的视觉功能,实现人眼视觉的延伸。

机器视觉是指利用相机、摄像机等传感器,配合机器视觉算法赋予智能设备人眼的功能,从而进行物体的识别、检测、测量等功能。机器视觉可以分为工业视觉、计算机视觉两类。

机器视觉的构成

一个完整的工业机器视觉系统是由众多功能模块共同组成,一般由光学系统(光源、镜头、工业相机)、图像采集单元、图像处理单元、执行机构及人机界面等模块组成,所有功能模块相辅相成,缺一不可。好的机器视觉系统能够为制造业提供更多有利于提高产品质量和生产效率的硬件支持。

机器视觉的优势

在工业生产的过程中,机器视觉相对于人眼识别体现了较大优势。机器视觉具有自动化、客观、非接触和高精度等特点。特别是在工业生产领域,机器视觉强调生产的精度和速度,以及工业现场环境下的可靠性与安全性,在重复和机械性的工作中具有较大的应用价值。

1、非接触测量,对于观测者与被观测者都不会产生任何损伤,从而提高系统的可靠性。

2、长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉则可以长时间地作测量、分析和识别任务。

3、缺陷检测功能是机器视觉用得最多的一项功能,它可以检测产品表面的一些信息,基本上需要用人眼来判断的产品品质,都可以用视觉技术代替。

4、能够自动测量产品的外观尺寸,比如外形轮廓、孔径、高度、面积等尺寸测量。

5、具有较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展了人眼的视觉范围。

机器视觉的特点

精确性——由于人眼有物理条件的限制,在精确性上机器有明显的优点。即使人眼依靠放大镜或显微镜来检测产品,机器仍然会更加精确,因为它的精度能够达到千分之一英寸。特别是检测生产线上高速运动的物体时,机器视觉更具优势。

重复性——机器可以以相同的方法一次一次的完成检测工作而不会感到疲倦。与此相反,人眼每次检测产品时都会有细微的不同,即使产品是完全相同的。

客观性——人眼检测还有一个致命的缺陷,就是情绪带来的主观性,检测结果会随工人心情的好坏产生变化,而机器没有喜怒哀乐,检测的结果自然非常可观可靠。

效率高——机器视觉系统可以快速获取大量信息,实现更为快速的产品检测,同时也易于加工过程中的信息集成,尤其是在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。

成本低——由于机器比人快,一台自动检测机器能够承担多人的任务。而且机器不需要停顿、能够连续工作,所以能够极大的提高生产效率从而降低生产成本。

机器视觉工作原理

通过机器视觉产品(即工业相机)将待检测目标转换成图像信号,传送给图像处理分析系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场设备的动作。

机器视觉系统工作流程

工件到达检测位置→向传感器触发脉冲→图像采集卡感应物件并开始工作→零件照明→工业摄像机等待扫描并输出→图像采集卡将数字图像存放到计算机内存中→处理器获取图像并把资料数据化→视觉软件对图像进行分析、识别→获取测量结果→离散输出,显示不良产品画面→控制流水线的动作或纠正误差。

从上述的工作流程可以看出,机器视觉系统是一种比较复杂的系统,因为大多数系统的监控对象都是运动物体,系统与运动物体的匹配和协调动作尤为重要,这些给系统各部分的动作时间和处理速度带来了严格的要求。

本文来自信息化观察者网,转载请注明出处。

 

注:除标明原创外,均为网友或机构投稿分享,如有宣发需求请联系dongxizhiku@163.com。