如何理解边缘计算,雾计算和云计算的区别

相比于云计算的高高在上和遥不可及,雾计算更为贴近地面,就在你我身边。我们知道,将数据从云端导入和导出实际上比人们想象的要更为复杂,由于接入设备越来越多,在传输数据、获取信息时,带宽就显得不够用了,这就为雾计算的产生提供了空间。

云计算

云计算是一种利用互联网实现随时随地、按需、便捷地使用共享计算设施、存储设备、应用程序等资源的计算模式。云计算系统由云平台、云存储、云终端、云安全四个基本部分组成。云平台作为提供云计算服务的基础,管理着数量巨大的CPU、存储器、交换机等大量硬件资源,以虚拟化的技术来整合一个数据中心或多个数据中心的资源,屏蔽不同底层设备的差异性,以一种透明的方式向用户提供计算环境、开发平台、软件应用等在内的多种服务。通常情况下,云平台从用户的角度可分为公有云、私有云、混合云等。公有云:第三方提供商为用户提供服务的云平台,用户可通过互联网访问公有云。私有云:为一个用户单独使用而组建的,对数据存储量、处理量、安全性要求高。混合云:是结合了公有云和私有云的优点而组建的。再者,通过从提供服务的层次可分为基础设施即服务(Iaas)、平台即服务(Paas)和软件即服务(Saas)。

雾计算

相比于云计算的高高在上和遥不可及,雾计算更为贴近地面,就在你我身边。我们知道,将数据从云端导入和导出实际上比人们想象的要更为复杂,由于接入设备越来越多,在传输数据、获取信息时,带宽就显得不够用了,这就为雾计算的产生提供了空间。雾计算的概念在2011年被人提出,并非是些性能强大的服务器,而是由性能较弱、更为分散的各种功能计算机组成,渗入电器、工厂、汽车、街灯及人们生活中的各种物品。雾计算是介于云计算和个人计算之间的,是半虚拟化的服务计算架构模型,强调数量,不管单个计算节点能力多么弱都要发挥作用。雾计算有几个明显特征:低延时、位置感知、广泛的地理分布、适应移动性的应用,支持更多的边缘节点。这些特征使得移动业务部署更加方便,满足更广泛的节点接入。与云计算相比,雾计算所采用的架构更呈分布式,更接近网络边缘。雾计算将数据、数据处理和应用程序集中在网络边缘的设备中,而不像云计算那样将它们几乎全部保存在云中。数据的存储及处理更依赖本地设备,而非服务器。所以,云计算是新一代的集中式计算,而雾计算是新一代的分布式计算,符合互联网的“去中心化”特征。

边缘计算

边缘计算指在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。到这里,您是否觉得边缘计算和雾计算有些相似呢?一般而言,雾计算和边缘计算的区别在于,雾计算更具有层次性和平坦的架构,其中几个层次形成网络,而边缘计算依赖于不构成网络的单独节点。雾计算在节点之间具有广泛的对等互连能力,边缘计算在孤岛中运行其节点,需要通过云实现对等流量传输。那么,边缘计算和云计算又有何区别?这两者都是处理大数据的计算运行方式。但不同的是,这一次,数据不用再传到遥远的云端,在边缘侧就能解决,更适合实时的数据分析和智能化处理,也更加高效而且安全。如果说物联网的核心是让每个物体智能连接、运行,那么边缘计算就是通过数据分析处理,实现物与物之间传感、交互和控制。“边缘计算”作为一种将计算、网络、存储能力从云延伸到物联网网络边缘的架构,遵循“业务应用在边缘,管理在云端”的模式。

本文来自信息化观察者网,转载请注明出处。

 

注:除标明原创外,均为网友或机构投稿分享,如有宣发需求请联系dongxizhiku@163.com。