工业互联网,是从“面”上颠覆,还是从“点”上燎原?

从现阶段来看,工业互联网的硬件产品是小量多样的长尾市场。追求硬件利润的同时,很难赚取海量数据,这种商业模式经过多年的验证。如果按部就班的按照这种商业模式推进,稳妥的确是稳妥,但是成长的天花板太低,往往陷在项目制的轮回中,无法自拔。
  对于工业互联网的发展路径,确实存在误解。在企业内部实现设备的广泛互联互通,很难一步到位。
 
  大谈颠覆,最终往往被结局打脸。
 
  此前一些人对工业互联网的发展规律有一些认知误区,以为IIoT可以迅速铺开,工业互联网云平台的普及速度堪比发射火箭。
 
  当观察到GE的Predix“操作系统”在工业互联网领域盲目踏空,并忙不迭的及时止损之后,由于火箭瞬间“蒸发”的前后落差较大,这些人又开始“唱衰”工业4.0和工业互联网IIoT。
 
  好在,更多的人理性客观的意识到工业互联网并不是一蹴而就,而其实是由“点”到“线”,再由“线”到“面”开展落地应用。
 
  因此我们看到很多企业从云端穿透到边缘,脚踏实地的在最靠近现场的边缘侧下功夫,使得工业互联网的各种分析与应用在经济上变得更加可行。小编也会呈现一些最近的实例,供感兴趣的你参考。
 
  在呈现实例之前,更值得关注的是工业互联网的商业模式问题。
 
 
  工业互联网往往是硬件与软件搭配,到底怎么去赚钱?大家都想走上人生巅峰,从硬件的一锤子买卖,做到靠软件的可持续盈利,但这路该怎么走?
 
  这些问题如果都有统一答案,工业互联网也就不会那么有魅力了。
 
  从现阶段来看,工业互联网的硬件产品是小量多样的长尾市场。追求硬件利润的同时,很难赚取海量数据,这种商业模式经过多年的验证。
 
  如果按部就班的按照这种商业模式推进,稳妥的确是稳妥,但是成长的天花板太低,往往陷在项目制的轮回中,无法自拔。
 
  因此,市场嗅觉灵敏并可快速响应变化的企业,推出了功能相似的边缘侧软硬件一体化数据处理方案。
 
  这些企业往往从预测性分析和智能决策作为切入点,犯其至难,而图其至远。
 
  他们利用已经验证的高可靠性产品,推进硬件的标准化,增加人工智能分析能力,通过软件和系统形成差异化,并积极赚取数据、模型和经验,推进从数据到决策的流程,立足服务SaaS化和长期发展。

本文来自信息化观察者网,转载请注明出处。

 

注:本站文章除标明原创外,均来自网友投稿及分享,如有侵权请联系dongxizhiku@163.com删除。

         

发表评论